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The hemodynamic effects of ventilation are complex but can be grouped under four clinically
relevant concepts. First, spontaneous ventilation is exercise, and critically ill patients may not
withstand the increased work of breathing. Initiation of mechanical ventilatory support will
improve oxygen delivery to the remainder of the body by decreasing oxygen consumption. To the
extent that mixed venous oxygen also increases, PaO2 will increase without any improvement in
gas exchange. Similarly, weaning from mechanical ventilatory support is a cardiovascular stress
test. Patients who fail to wean also manifest cardiovascular insufficiency during the failed
weaning attempts. Improving cardiovascular reserve or supplementing support with inotropic
therapy may allow patients to wean from mechanical ventilation. Second, changes in lung volume
alter autonomic tone and pulmonary vascular resistance (PVR), and at high lung volumes
compress the heart in the cardiac fossa. Hyperinflation increases PVR and pulmonary artery
pressure, impeding right ventricular ejection. Decreases in lung volume induce alveolar collapse
and hypoxia, stimulating an increased pulmonary vasomotor tone by the process of hypoxic
pulmonary vasoconstriction. Recruitment maneuvers, positive end-expiratory pressure, and
continuous positive airway pressure may reverse hypoxic pulmonary vasoconstriction and reduce
pulmonary artery pressure. Third, spontaneous inspiration and spontaneous inspiratory efforts
decrease intrathoracic pressure (ITP). Since diaphragmatic descent increases intra-abdominal
pressure, these combined effects cause right atrial pressure inside the thorax to decrease but
venous pressure in the abdomen to increase, markedly increasing the pressure gradient for
systemic venous return. Furthermore, the greater the decrease in ITP, the greater the increase
in left ventricular (LV) afterload for a constant arterial pressure. Mechanical ventilation, by
abolishing the negative swings in ITP, will selectively decrease LV afterload, as long as the
increases in lung volume and ITP are small. Finally, positive-pressure ventilation increases ITP.
Since diaphragmatic descent increases intra-abdominal pressure, the decrease in the pressure
gradient for venous return is less than would otherwise occur if the only change were an increase
in right atrial pressure. However, in hypovolemic states, positive-pressure ventilation can induce
profound decreases in venous return. Increases in ITP decrease LV afterload and will augment
LV ejection. In patients with hypervolemic heart failure, this afterload reducing effect can result
in improved LV ejection, increased cardiac output, and reduced myocardial oxygen demand.

(CHEST 2005; 128:592S–597S)
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nary vasoconstriction; ITP � intrathoracic pressure; LV � left ventricle/ventricular; PEEP � positive end-expiratory pres-
sure; PVR � pulmonary vascular resistance; RV � right ventricle/ventricular; Svo2 � mixed venous oxygen saturation

Learning Objectives: 1. To review the complex physiologic interactions between the cardiovascular and respiratory systems
as they apply to the critically ill patient. 2. To understand the effects of mechanical ventilation versus spontaneous respiration
on cardiorespiratory responses. 3. To describe the impact of ventilator settings and weaning from mechanical ventilation on
heart-lung interactions.

V entilation can profoundly alter cardiovascular
function via complex, conflicting, and often op-

posite processes. These processes reflect the inter-
action between myocardial reserve, ventricular
pump function, circulating blood volume, blood flow
distribution, autonomic tone, endocrinologic re-
sponses, lung volume, intrathoracic pressure (ITP),
and the surrounding pressures for the remainder of
the circulation. Clearly, the final response to venti-
latory stress is dependent on the baseline cardiovas-
cular state of the subject.

Lung volume increases in a tidal fashion during
both spontaneous and positive-pressure inspiration.
However, ITP decreases during spontaneous inspi-
ration owing to the contraction of the respiratory
muscles, whereas ITP increases during positive-
pressure inspiration due to passive lung expansion to
increasing airway pressure. Thus, changes in ITP and
the metabolic demand needed to create these
changes represent the primary determinants of the
hemodynamic differences between spontaneous and
positive-pressure ventilation.1
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Spontaneous Ventilation Is Exercise

Although ventilation normally requires � 5% of
total oxygen delivery,2 in lung disease states the work
of breathing is increased, such that its metabolic
demand for oxygen may reach 25% of total oxygen
delivery. If cardiac output also is limited, blood flow
to other organs can be compromised, causing tissue
hypoperfusion, ischemic dysfunction, and lactic aci-
dosis.3 Mechanical ventilation will decrease the work
of breathing, even if delivered by noninvasive venti-
lation mask continuous positive airway pressure
(CPAP).4 The resultant cardiovascular effects will be
increased oxygen delivery to other organs, decreased
serum lactate levels, and increase mixed venous
oxygen saturation (Svo2). The obligatory increase in
Svo2 will result in an increase in the Pao2 if fixed
right-to-left shunts exist, even if mechanical ventila-
tion does not alter the ratio of shunt blood flow to
cardiac output. Finally, if cardiac output is severely
limited, respiratory muscle failure develops despite
high central neuronal drive, such that many heart
failure patients die a respiratory death prior to
cardiovascular standstill.5

Ventilator-dependent patients who fail to wean
from mechanical ventilation may display impaired
baseline cardiovascular performance6 but routinely
only have signs of heart failure during weaning. The
transition from positive-pressure to spontaneous
ventilation can be associated with pulmonary ede-
ma,6 myocardial ischemia,7,8 tachycardia, and gut
ischemia.9 Jubran et al10 demonstrated that although
all subjects increase their cardiac outputs in response
to a weaning trial, consistent with the increased
metabolic demand, those who subsequently fail to
wean also display a decrease in Svo2. Since the
increased work of breathing may come from the
endotracheal tube flow resistance,11 failure to wean
may reflect ventilator work rather than innate respi-
ratory system resistance. Thus, some patients who
fail a t-tube trial pass an extubation trial. Since

weaning from mechanical ventilatory support is a
cardiovascular stress, it is not surprising that wean-
ing-associated ECG and thallium cardiac blood flow
scan-related signs of ischemia have been reported in
both subjects with known coronary artery disease7

and in otherwise normal patients.8 Similarly, initiat-
ing mechanical ventilation in patients with severe
heart failure and/or ischemia can reverse myocardial
ischemia.12

Inspiration Increases Lung Volume

Autonomic Tone

Inflation induces immediate changes in autonomic
output,13 causing cardiac acceleration otherwise
known as respiratory sinus arrhythmia,14 which im-
plies normal autonomic responsiveness.15 Loss of
respiratory sinus arrhythmia is seen in diabetic pe-
ripheral neuropathy, and its reappearance precedes
the return of peripheral autonomic control.16 Lung
inflation to larger tidal volumes (� 15 mL/kg) de-
creases heart rate by sympathetic withdrawal.17 Re-
flex arterial vasodilatation can also occur with lung
hyperinflation.13,18 Since patients with ARDS often
ventilate a small amount of lung, regional hyperin-
flation of aerated lung units may develop and lead to
reflex cardiovascular depression. Although humoral
factors released from pulmonary endothelial cells
during lung inflation may also induce this depressor
response,19 these interactions do not appear to be
relevant clinically because unilateral lung hyperinfla-
tion does not alter systemic hemodynamics.20

Humoral Factors

Positive-pressure ventilation and sustained hyper-
inflation induce fluid retention via right atrial stretch
receptors that increase plasma norepinephrine,
plasma renin activity,21 and decrease atrial natri-
uretic peptide activity.22 Congestive heart failure
(CHF) patients receiving nasal CPAP decrease their
plasma atrial natriuretic peptide activity inversely
with the associated increase in cardiac output.23

Pulmonary Vascular Resistance

Lung inflation primarily affects cardiac function
and cardiac output by altering right ventricular (RV)
preload and afterload.24 Changes in ITP that occur
without changes in lung volume, as may occur with
obstructive inspiratory efforts or a Valsalva maneu-
ver, will not alter pulmonary vascular resistance
(PVR). Lung volume must change. The mechanism
by which ventilation alters PVR is complex. If re-
gional alveolar Po2 decreases below 60 mm Hg, local
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pulmonary vasomotor tone increases, reducing local
blood flow25 by a process known as hypoxic pulmo-
nary vasoconstriction (HPV). Decreases in end-expi-
ratory lung volume promote alveolar collapse stimu-
lating HPV. Patients with acute hypoxemic
respiratory failure usually have small lung volumes.26

Restoration of lung volume to normal values by
recruitment maneuvers and positive end-expiratory
pressure (PEEP) usually reduces PVR in these pa-
tients by reversing HPV.27

Hyperinflation passively compresses the alveolar
vessels26 increasing PVR.28 Hyperinflation can create
significant pulmonary hypertension and may precip-
itate acute RV failure (acute cor pulmonale)29 and
RV ischemia.30 Thus, PEEP may decrease PVR if it
reverses HPV,31 or it may increase PVR if it only
hyperinflates the lungs.32

Mechanical Heart-Lung Interactions

Hyperinflation compresses the heart between the
expanding lungs,33 increasing juxtacardiac ITP and
pericardial pressure more than lateral chest wall
ITP.34 This decrease in “apparent” left ventricular
(LV) diastolic compliance was previously misinter-
preted as PEEP-induced impaired LV contractili-
ty.35 However, when patients are fluid resuscitated
back to their original LV end-diastolic volume, car-
diac output also returns to its original levels36 despite
the continued application of PEEP.37

Ventilation Alters ITP

The heart is a pressure chamber within a pressure
chamber. Therefore, changes in ITP will affect the
pressure gradients for both systemic venous return to
the RV and systemic outflow from the LV, indepen-
dent of the heart. Increases in ITP, by increasing
right atrial pressure and decreasing transmural LV
systolic pressure, will reduce the pressure gradients
for venous return and LV ejection decreasing in-
trathoracic blood volume. Decreases in ITP will
augment venous return and impede LV ejection and
increase intrathoracic blood volume.

Systemic Venous Return

Right atrial pressure is the backpressure to sys-
temic venous return.38 Blood flows back to the heart
from the periphery through low-pressure/low-resis-
tance venous conduits. Guyton et al38 characterized
venous flow from the venous reservoirs into the right
atrium. Right atrial pressure can change rapidly
during the ventilatory cycle because of the concom-
itant changes in ITP.39 Positive-pressure inspiration
increases ITP and right atrial pressure, decreasing

the pressure gradient for venous return, which de-
creases venous blood flow,40 RV stroke volume, and
consequently cardiac output.39 This decrease in ve-
nous return is minimized by the concomitant in-
crease in intra-abdominal pressure induced by dia-
phragmatic descent and abdominal wall muscle
contraction.41 We recently documented that increas-
ing CPAP up to 20 cm H2O would not decrease
cardiac output as long as intra-abdominal pressure
also increased similarly.42 Markedly negative swings
in ITP, as occur with obstructed inspiratory efforts,
do not flood the RV with blood because venous
return becomes flow limited as ITP becomes subat-
mospheric.38

LV Preload and Ventricular Interdependence

Changes in venous return must eventually result in
directionally similar changes in LV preload after two
or three beats, as seen with a Valsalva maneuver.43

This phase delay in changes in output from the RV to
the LV is exaggerated if tidal volume or respiratory
rate are increased or in the setting of hypovolemia.44

Direct ventricular interdependence can also occur
and be clinically significant. Increasing RV volume
shifts the intraventricular septum into the LV and
simultaneously decreases LV diastolic compliance.
During positive-pressure ventilation, RV volumes
are usually decreased, minimizing ventricular inter-
dependence.36,44,45 Positive-pressure ventilation-in-
duced increases in lung volume compress the two
ventricles into each other, decreasing biventricular
volumes.46 Restoring LV end-diastolic volume with
fluids returns cardiac output during PEEP therapy47

without LV diastolic compliance changes.
However, during spontaneous inspiration, as RV

volumes transiently increase, septal shift into the LV
lumen is the rule,48 decreasing LV diastolic compli-
ance and end-diastolic volume.31,45 This interdepen-
dence is the primary cause of inspiration-associated
decreases in arterial pulse pressure, otherwise
known as pulsus paradoxus.1

Left Ventricular Afterload

Maximal LV wall tension, or afterload, normally
occurs at the end of isometric contraction. LV
afterload normally decreases during ejection because
LV volume decreases markedly despite the small
increase in ejection pressure. With LV dilation,
however, as in CHF, maximal LV wall stress occurs
during LV ejection, making the heart more sensitive
to changes in ejection pressure. Since arterial pres-
sure with respect to atmosphere is kept constant by
baroreceptor feedback,18 if arterial pressure were to
remain constant as ITP increases, then LV ejection
pressure must decrease.49 Similarly, decreases in
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ITP with a constant arterial pressure will increase LV
ejection pressure.43,50 Accordingly, any process asso-
ciated with marked decreases in ITP must also be
associated with increased LV afterload and myocar-
dial oxygen consumption. This is part of the reason
why weaning induces cardiac stress.

Rapid increases in ITP, as in coughing, will in-
crease arterial pressure but not alter LV ejection
pressure1,51 or aortic blood flow.33 However, sus-
tained increases in ITP, as seen with a Valsalva
maneuver, will eventually decrease aortic blood flow
and arterial pressure because venous return decreas-
es.1 However, if ITP were to increase arterial pres-
sure without changing transmural arterial pressure,
then the periphery would reflexively vasodilate to
maintain a constant extrathoracic arterial pressure-
flow relation,52 causing a reflex-induced decrease in
LV afterload. Although increasing ITP to reduce LV
ejection pressure is an impractical clinical strategy
because of the associated decrease in venous return,
abolishing negative swings in ITP will have the
identical effect of reducing LV ejection pressure but
without affecting venous return. Negative swings in
ITP, as seen with spontaneous inspiratory efforts
during airway obstruction or stiff lungs, will selec-
tively increase LV afterload without increasing ve-
nous return. Selective increases in LV afterload in
these conditions may cause acute LV failure and
pulmonary edema,6,53 especially if contractility is
already compromised.6 Importantly, abolishing such
large negative swings in ITP by either removing the
inspiratory obstruction (eg, intubation) or offsetting
the negative ITP swings with positive airway pres-
sure (eg, starting mechanical ventilation) usually
reduces LV afterload without decreasing cardiac
output.38 Similarly, spontaneous inspiration during
weaning must increase LV afterload.10

Hemodynamic Effects of Ventilation
Depend on Cardiopulmonary Status

A single ventilatory maneuver can have opposite
cardiovascular effects in different patients. Impor-
tantly, the hemodynamic response to a specific ven-
tilatory state may also be used to identify the cardio-
vascular reserve of that patient. In patients who are
otherwise normal, their cardiovascular state is char-
acterized by preload dependency. Thus, in normal
subjects or those patients with hypovolemia (eg,
hemorrhagic shock, severe vomiting, diarrhea, loss of
vasomotor tone, spinal cord shock) and also in
subjects who may have RV failure with hyperinfla-
tion (severe obstructive lung disease, RV contusion
during anterior chest trauma), intubation and posi-
tive-pressure ventilation may rapidly induce cardio-

vascular insufficiency requiring massive volume re-
suscitation. In patients with CHF, positive-pressure
ventilation will not impair cardiac output unless
hyperinflation also occurs. Since mechanical ventila-
tion will also decrease global and myocardial oxygen
demand, overall organ function may improve as well.
Similarly, withdrawal of ventilatory support in pa-
tients with limited cardiovascular reserve should be
done slowly because the increased load on the heart
can precipitate heart failure and pulmonary edema.6

The hemodynamic differences between different
modes of total mechanical ventilatory support at a
constant airway pressure and PEEP can be explained
by their differential effects on lung volume and
ITP.54 If two different modes of ventilatory support
induce similar changes in ITP and ventilatory effort,
their hemodynamic effects will also be similar, de-
spite markedly different airway waveforms. Partial
ventilatory support with either intermittent manda-
tory ventilation or pressure support ventilation give
similar hemodynamic responses when matched for
similar tidal volumes.55 Positive-pressure ventilation
decreases intrathoracic blood volume56 and PEEP
decreases it even more57,58 without altering LV
systolic performance.59 However, since lung and
chest wall compliance can vary widely over time and
among patients with the same diagnosis, increases in
airway pressure may not reflect increases in ITP.
Increases in lung volume, not airway pressure, define
the degree of increase of ITP during positive-pres-
sure ventilation.60 If the increase in lung volume is
held constant among forms of positive-pressure ven-
tilation, the hemodynamic effects are similar,61

whereas pressure-limited ventilation, if associated
with lower tidal volume, will enjoy higher cardiac
output.62 Importantly, during spontaneous ventila-
tion trials, the degree of hyperinflation, not the
airway pressure, determines the decrease in cardiac
output.63 Most of the decrease in cardiac output can
be reversed by fluid resuscitation.59,64 If cardiac
output does not increase with fluid resuscitation,
then other processes, such as cor pulmonale, in-
creased PVR, or cardiac compression, may also be
inducing this cardiovascular depression.63

The cardiovascular benefits of positive airway
pressure can be seen by withdrawing negative swings
in ITP. Increasing levels of CPAP improve cardiac
function in patients with heart failure but only once
the negative swings in ITP are abolished.65 Nasal
CPAP can also accomplish the same results in pa-
tients with obstructive sleep apnea and heart fail-
ure,66 although the benefits do not appear to be
related to changes in obstructive breathing pattern.67

Prolonged nighttime nasal CPAP can selectively
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improve respiratory muscle strength, as well as LV
contractile function if the patient had preexisting
heart failure.68

Patients with COPD are at an increased risk of
hyperinflation, either due to bronchospasm, loss of
lung parenchyma or dynamic hyperinflation (inade-
quate expiratory time). Hyperinflation will compress
the heart, increase PVR, and impede RV filling.
Intrinsic PEEP (hyperinflation) alters hemodynamic
function similar to extrinsic PEEP. Thus, matching
intrinsic PEEP with ventilator-derived PEEP does
not alter hemodynamics.69 There is little hemody-
namic difference between increasing airway pressure
to generate a breath and decreasing extrathoracic
pressure (iron lung-negative pressure ventilation).70
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